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The finitely generated free algebras FV(Lk)
(n) (k $ 2, n $ 3) in the varieties V(Lk)

of orthomodular lattices generated by the ortholattices Lk which are horizontal
sums of one block 23 and k21 blocks 22 are described as abstract algebras. This
is a continuation of earlier work and indicates the complexity one must expect
when describing the finitely generated free algebras in finitely generated varieties
of orthomodular lattices generated by ortholattices containing Boolean blocks
larger than 22.

In Haviar et al. (1997a, b) we completely described the finitely generated
free algebras in the finitely generated varieties of modular ortholattices as
abstract algebras. We gave a detailed introduction to the topic as well as the
necessary background, and we refer the reader to these two papers for all
concepts and facts not explained here. The basic facts about orthomodular
lattices can be found in Kalmbach (1983) and Beran (1984). Transferring the
known ‘concrete representations’ of the finitely generated free algebras (as
algebras of term functions) to ‘abstract representations’ enables us to derive
easily the cardinalities of such free algebras, a fact we used fully in the first
two papers.

The finitely generated subvarieties of the variety }2 of all modular
ortholattices form the chain

7 ,
2/

@ ,
2/

}22 ,
2/

}23 ,
2/

??? ,
2/

}2k ,
2/

}2k 1 1 ,
2/

??? ,
2/

}2

of type v 1 1, where 7 and @ are the varieties of trivial algebras and
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Boolean algebras, respectively, and }2k 5 V(MOk) is the variety generated
by the orthomodular lattice MOk of height 2 with k Boolean blocks 22. In
this paper we shall consider the chain of varieties V(Lk) (k $ 2), where Lk

is the ortholattice which is the horizontal sum of one block 23 and k 2 1
blocks 22. This chain is such that for every k $ 2, V(Lk) contains the variety
V(MOk) and the variety V(L2) covers the variety V(MO2) (Kalmbach, 1983).

The aim of this paper is to describe the finitely generated free algebras
FV(Lk)(n) (k $ 2, n $ 3) with n generators in the varieties V(Lk) as abstract
algebras (see Theorem 3). We know that these free algebras are finite because
the varieties V(Lk) 5 ISP(Lk) are locally finite (Clark and Davey, 1998,
Chapter 1.3).

As it was the case for the ortholattices MOk , the term function

p(x, y, z) 5 (x ∨ z) ∧ (x ∨ y8) ∧ (z ∨ y8)

∧ [(c(x, y) ∧ z) ∨ (c( y, z) ∧ x) ∨ (c(x, z) ∧ x ∧ z)]

is an arithmeticity term function for the ortholattices Lk , too. Indeed, if x, z
belong to the same block of Lk , then (x ∨ z) ∧ (x8 ∨ z) 5 z and c(x, z) 5
1; if x, z are from different blocks of Lk , then (x ∨ z) ∧ (x8 ∨ z) 5 1 and
c(x, z) 5 0. Thus by Theorems 2.1 and 2.2 in Haviar et al. (1997b), following
from the Arithmetic Strong Duality Theorem in Clark and Davey (1998,
Theorem 3.11), the n-generated free algebra FV(Lk)(n) (k $ 2, n $ 3) is
isomorphic to the algebra of all functions from Ln

k to Lk preserving all partial
endomorphisms of Lk.

We proceed in a manner analogous to Haviar et al. (1997b). First, the
n-generated free algebra FV(Lk)(n) can be expressed as the product

FV(Lk)(n) 5 [0, c(x1, . . . , xn)] 3 [0, c8(x1, . . . , xn)]

where c(x1, . . . , xn) 5 `(i1,...,in)P{0,1}n(xi1
1 ∧ ??? ∧ xin

n ) is the commutator of the
generators x1, . . . , xn of the free algebra FV(Lk)(n) [here x0

i 5 xi , x1
i 5 x8i and

c8(x1, . . . , xn) denotes (c(x1, . . . , xn))8]. The interval [0, c(x1, . . . , xn)] is
isomorphic to the n-generated free Boolean algebra F@(n) > 22n

(Haviar et
al., 1997b, Theorem 3.1). Second, to evaluate [0, c8(x1, . . . , xn)], we decom-
pose the interval [0, c8(x1, . . . , xn)] by the commutators c(xi , xj) (i, j 5 1,
. . . , n, i , j ) as

[0, c8(x1, . . . , xn)] > p
w̃P{0,1}N

F0, `
n

i,j51
i,j

cwi,j(xi , xj) ∧ c8(x1, . . . , xn)G
where the product is taken over all N-tuples w̃ 5 (w1,2, . . . , wn21,n) P {0,
1}N, N 5 (n

2) and
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cwi,j(xi , xj) 5 Hc(xi , xj) if wi,j 5 0
c8(xi , xj) if wi,j 5 1

Here again the term function

tw̃(x1, . . . , xn) 5 `
n

i,j51
i,j

cwi,j (xi , xj) ∧ c8(x1, . . . , xn)

corresponds to a labeled unoriented graph Gw̃ (without multiple edges and
loops) on the vertex set (x1, . . . , xn) with edges xi xj whenever wi,j 5 1 for
i , j. Any one of G, w̃, or tw̃(x1 , . . . , xn), the last denoted also by CG(x1,
. . . , xn), determines the other two. A necessary and sufficient condition on
the structure of the graph G for the interval [0, tw̃(x1, . . . , xn)] 5 [0, CG(x1,
. . . , xn)] in FV(Lk) (n) to be nontrivial can be described as in Haviar et
al. (1997b).

Proposition 1 (Haviar et al., 1997b). The following conditions are
equivalent:

(a) CG(x1, . . . , xn) is not identically equal to zero.
(b) There exist elements a1, . . . , an P Lk with the following properties:

(i) CG(a1, . . . , an) 5 1.
(ii) The elements a1, . . . , an are not all from the same block of Lk.

(iii) xixj is an edge of G if and only if ai , aj are elements of
different blocks in Lk.

(c) Gp :5 G consists of l isolated vertices (0 # l # n 2 p) and one
connected component which is a complete p-partite graph (2 # p
# k).

The interval [0, CG(x1, . . . , xn)] is isomorphic to the algebra of all functions
from Ln

k to Lk which are pointwise less than or equal to CG(x1, . . . , xn) and
preserve all partial endomorphisms of Lk. Any such function must take value
zero whenever the term CG does. Let TG be the set of all n-tuples a 5 (a1,
. . . , an) from (Lk)n at which CG is nonzero, that is CG(a1, . . . , an) 5 1. Let
us call the coordinates ai P {0, 1} corresponding to isolated vertices of G
trivial. Proposition 1 yields that the nontrivial coordinates of a P TG lie in
exactly p of the k Boolean blocks B1, . . . , Bk of Lk corresponding to the
blocks of the p-partite component of the graph G 5 Gp , 2 # p # k. Let us
assume that the blocks of the p-partite component of the graph G have
cardinalities k1, . . . , kp , where k1 $ k2 $ ??? $ kp $ 1 and (p

i51 ki # n.
W.l.o.g., let (B1, . . . , Bp)(a) be a sequence of the p Boolean blocks of Lk

containing the nontrivial coordinates of a such that the number of the nontriv-
ial coordinates of a from the block Bi is ki , i 5 1, . . . , p. In the first
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step we shall consider a partition of TG into orbits under the action of the
automorphism group Aut(Lk) and we shall count the number of orbits of
Aut(Lk) on TG.
We shall distinguish types I and II of the n-tuples a 5 (a1, . . . , an) P TG

[and the corresponding orbits Orb(a)] in case the block 23 of Lk is a member
of (B1, . . . , Bp)(a), i.e., Bi > 23 for a unique i P {1, . . . , p}. By type I we
shall mean the n-tuples a [orbits Orb(a)] such that the ki coordinates of a
belonging to the block Bi 5 {0, b, b8, c, c8, d, d8, 1} are only from the set
{b, b8} for an atom b of Bi , and by type II we shall mean the n-tuples a
[orbits Orb(a)] such that the ki nontrivial coordinates of a belonging to the
block Bi contain distinct elements b, c, where b, c are not an atom and its
complement in Bi. For simplicity, let us now assume that i 5 1 and the first
k1 coordinates of a are from B1 > 23; in this case, let the considered types
of the n-tuples a [orbits Orb(a)] be specified as I.1 and II.1, respectively.
Since there are automorphisms of Lk permuting any two of the three atoms
b, c, d of the block B1 and permuting the atoms aj , a8j of other blocks B2,
. . . , Bp , to pick up a representative of an orbit Orb(a)of type I.1, we have
2k1 choices for the k1 coordinates from B1, 2ki21 choices for the ki coordinates
from Bi (i P {2, . . . , p}), and 2n2(k11???1kp) choices for the coordinates of a
from {0, 1}. This altogether gives

2k1 ? 2k221 ? ??? ? 2kp21 ? 2n2(k11???1kp) 5 2n2p11

different orbits Orb(a) of Aut(Lk) of type I.1 on TG. [We shall later show
that among all orbits Orb(a) of type I it is sufficient to consider only the
orbits of type I.1.] The number of orbits Orb(a) of type II.1 in TG under the
automorphism action will follow from the following lemma.

Lemma 2. There are (up to the automorphism action)

P(k) 5 2k21 1 6k21

choices for the k :5 k1 coordinates of the n-tuples a 5 (a1, . . . , an) of type
I.1 or II.1 in TG to be taken from the block B1 > 23.

Proof. If the pair of the first two coordinates of a taken from B1 is one
of the four pairs (b, c), (b, c8), (b8, c), (b8, c8), where the distinct elements
b, c ¸ {0, 1} are not an atom of B1 and its complement, then any of the
remaining k 2 2 coordinates from B1 can be chosen arbitrarily from the six
elements {b, b8, c, c8, d, d8} of B1, giving 4 ? 6k22 choices for the k coordinates
from the block B1 starting with such first two coordinates. In the other case
the pair of the first two coordinates is one of (b, b), (b, b8), (b8, b), (b8, b8)
for an atom b of B1, giving (up to the automorphism action) two choices b
and b8 for the first coordinate and, recursively, P(k 2 1) choices for the
remaining k 2 1 coordinates. Hence we arrive at the recursive formula
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P(k) 5 4 ? 6k22 1 2 ? P(k 2 1)

By standard methods of solving such formulas, we obtain

P(k) 2 2P(k 2 1)
P(k 2 1) 2 2P(k 2 2)

5 6

P(k) 2 8P(k 2 1) 1 12P(k 2 2) 5 0

u2 2 8u 1 12 5 0

u1 5 2, u2 5 6

P(k) 5 a ? 2k 1 b ? 6k, a, b P R

One can check that P(2) 5 8 and P(3) 5 40, which leads to

a 5
1
2
, b 5

1
6

Hence P(k) 5 2k21 1 6k21. n

Since again there are automorphisms permuting the atoms aj , a8j of other
blocks B2, . . . , Bp , to pick up a representative a of an orbit Orb(a) of one
of the types I.1, II.1, we have 2k121 1 6k121 choices for the coordinates from
B1, 2ki21 choices for the coordinates from Bi for i 5 2, . . . , p, and
2n2(k11???1kp ) choices for the coordinates of a from {0, 1}. This altogether gives

(2k121 1 6k121) ? 2k221 ? ??? ? 2kp21 ? 2n2(k11 ??? 1kp) 5 2n2p(3k121 1 1)

orbits Orb(a) of Aut(Lk) of type I.1 or II.1 on TG. Hence the number of orbits
Orb(a) of type II.1 is 2n2p(3k121 1 1) 2 2n2p11 5 2n2p(3k121 2 1) and the
number of orbits Orb(a) of type II altogether is

N(k1, . . . , kp) 5 2n2p[1o
p

i51
3ki212 2 p]

Let us assume now that for the n-tuple a 5 (a1, . . . , an) P TG , the
block 23 of Lk is not a member of (B1, . . . , Bp)(a), hence Bi > 22 for all i 5
1, . . . , p. Let us say such n-tuples a P TG [the corresponding orbits Orb(a)]
are of type III. Because there are automorphisms permuting the atoms aj ,
a8j of any of the blocks B1, . . . , Bp , there are obviously

2k121 ? 2k221 ? ??? ? 2kp21 ? 2n2(k11???1kp) 5 2n2p

orbits Orb(a) of Aut(Lk) of type III.
In the second step we determine the structure of the Aut(Lk)-preserving

functions from Ln
k to Lk which are pointwise less than or equal to CG(x1, . . . ,

xn). We proceed as in Haviar et al. (1997b). We may extend the action of
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Aut(Lk) on Lk pointwise to (Lk)n, so that for a 5 (a1, . . . , an) P (Lk)n and
a P Aut(Lk), aa 5 (aa

1, . . . , aa
n) P (Lk)n and a function f : (Lk)n → Lk is a-

preserving if for all a P (Lk)n, f (aa) 5 f (a)a. To define an Aut(Lk)-preserving
function f # CG , we cannot freely choose images from Lk for representatives
of the orbits Orb(a) within TG because when p , k, there exist automorphisms
a Þ b in Aut(Lk) such that for any representative a of orbit Orb(a), aa is
equal to ab, restricting the choices for f (a) to those which satisfy f (a)a 5
f (a)b. Hence, as in Haviar et al. (1997b), we may freely choose the image
f (a) for each orbit-representative a within ùgPStaba fixLk(g), which forces the

values of the other elements aa in Orb(a) to be f (aa) 5 f (a)a. The difference
from Haviar et al. (1997b) is that obviously now only the orbits of types I
and III within TG contribute a factor MOp to the algebra of Aut(Lk)-preserving
functions f : (Lk)n → Lk , while the orbits of type II within TG contribute a
factor Lp. Indeed, this follows from the fact that the stabilizer of n-tuples
a P TG of type II with associated sequences of blocks (B1, . . . , Bp)(a), where
Bi > 23 for a unique i P {1, . . . , p}, consists of exactly those automorphisms
in Aut(Lk) which fix all elements of the blocks B1, . . . , Bp in Lk and permute
only atoms in the remaining k 2 p blocks 22 of Lk.

In the third step we determine which of the orbits Orb(a) of types I, II
and III can be “glued together” by the action of the partial endomorphisms
of Lk. First, we note that for a 5 (a1, . . . , an), b 5 (b1, . . . , bn) in TG , the
action e(a1) 5 b1, . . . , e(an) 5 bn by a partial endomorphism e of Lk is
impossible if the domain dom(e) is just a subalgebra of one of the blocks of
Lk because the nontrivial coordinates of a, b from TG always lie in at least
two different blocks of Lk. Second, we note that for any partial endomorphism
e of Lk having an action e(a1) 5 b1, . . . , e(an) 5 bn for some (a1, . . . , an),
(b1, . . . , bn) P TG , there always exists a partial endomorphism e8 of Lk with
a “reverse action” e8(b1) 5 a1, . . . , e8(bn) 5 an. Hence the binary relation
E on the set of orbits Orb(a) of types I, II and III defined by (Orb(a), Orb(b))
P E if there is a partial endomorphism e with the action e(a1) 5 b1, . . . ,
e(an) 5 bn is an equivalence relation.

In the first step we dealt with the n-tuples a P TG of type I.1 determined
by a sequence of blocks (B1, B2 . . . , Bp)(a), where B1 > 23. Now we see
that for an arbitrary orbit Orb(b) of type I with an associated sequence
(B81, B82 . . . , B8p)(b), where B8i > 23 for a unique i P {2, . . . , p}, we obtain
(Orb(a), Orb(b)) P E for the n-tuple a 5 (a1, . . . , an) P TG of type I.1
obtained from b by mutually replacing in b the coordinates from the first
block B81 > 22 with the coordinates from the ith block B8i > 23. This is
witnessed by the action e(a1) 5 b1, . . . , e(an) 5 bn , where the partial
endomorphism e of Lk acts such that it mutually replaces the atoms of Lk

which are the coordinates of b coming from the block B81 > 22 with the
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elements b, b8 of Lk which are the coordinates of b coming from the block
B8i > 23 and fixes all elements of the blocks B82, . . . , B8i21, B8i11, . . . , B8p of
Lk. This means that a function f : Ln

k → Lk preserving all partial endomor-
phisms of Lk can map the representative a of Orb(a) of type I.1 arbitrarily
into the subalgebra MOp of Lk , and the image of the representative b of
Orb(b) of a given type I (different from I.1) is determined by

f(b1, . . . , bn) 5 f(e(a1), . . . , e(an)) 5 e( f(a1, . . . , an))

Consequently, the factors MOp contributed by the orbits Orb(a) of type I
different from I.1 will not be considered.

Similarly, each orbit Orb(a) where a 5 (a1, . . . , an) is of type III with
an associated sequence (B1, B2 . . . , Bp)(a) with all blocks Bi > 22, i 5 1,
. . . , p, can be “glued together” by the equivalence E with an orbit Orb(b)
such that b 5 (b1, . . . , bn) is of type I.1 with the associated sequence (B81,
B2 . . . , Bp)(b) where B81 5 23. This is witnessed by the action e(a1) 5 b1,
. . . , e(an) 5 bn of the partial endomorphism e acting such that it mutually
replaces the atoms of Lk which are the coordinates of a coming from the
block B1 > 22 with the elements b, b8 of Lk which are the coordinates of b
coming from the block B81 > 23 and fixes all elements of the blocks B2 . . . ,
Bp of Lk. Consequently, the factors MOp contributed by the orbits Orb(a) of
type III will not be considered either.

Finally, each orbit Orb(a) of type I.1 with a sequence (B1, B2 . . . , Bp)(a)
such that the k1 coordinates of a are coming from the set {b, b8} of the block
B1 > 23 for some atom b of B1, can be “glued together” by the equivalence
E with an obit Orb(b) where b 5 (b1, . . . , bn) can be obtained from a 5
(a1, . . . , an) by only mutually replacing the atom b with its complement b8.
This is clearly witnessed by the partial endomorphism of Lk mutually replacing
b and b8 and fixing all elements of the blocks B2 . . . , Bp of Lk. It will finally
reduce the number of factors MOp contributed by the orbits Orb(a) of type
I.1 by half, that is, 2n2p.

Hence the structure of the interval [0,CG(x1, . . . , xn)] associated to a p-
partite graph G 5 Gp(k1, . . . , kp) with blocks of cardinalitites k1, . . . , kp

such that each ki $ 1 and (p
i51 ki # n is

[0,CG(x1, . . . , xn)] > (MOp)2n2p
3 (Lp)N((k1,...,kp)

where N(k1, . . . , kp) 5 2n2p[((n
i51 3ki21) 2 p]. We see that unlike the situa-

tion in Haviar et al. (1997b), this structure now depends on the sequence
(k1, . . . , kp) of the cardinalities of the blocks of the p-partite graph G where
we can assume that k1 $ ??? $ kp.

The number f(n; k1, . . . , kp) of the p-partite graphs G 5 Gp(k1, . . . ,
kp) on an n-element vertex set with blocks of cardinalities k1, . . . , kp (k1 $
??? $ kp $ 1 (p

i5 1 ki # n) and with l 5 n 2 (p
i51 ki isolated vertices can be
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determined as follows. First, we have (n
l )) choices for the isolated vertices.

Second, the number of partitions of a labeled (n 2 l )-element set S 5 {1,
. . . , n 2 l} into exactly p blocks S1, . . . , Sp of cardinalities k1, . . . , kp ,
respectively is given by (Aigner 1979, 3.15)

S(n 2 l; k1, . . . , kp) 5 P(b1, . . . , bn 2 l)

5
(n 2 l)!

b1!b2! . . . bn2l!(2!)b2 . . . ((n 2 l)!)bn2l
(1)

where for i 5 1, . . . , n 2 l, bi denotes the number of blocks of cardinality
i among the blocks S1, . . . , Sp. Hence we obtain

f(n; k1, . . . , kp) 5 1 n
(p

i51 ki
2 S1o

p

i51
ki; k1, . . . , kp2 (2)

We consequently arrive to the following theorem.

Theorem 3. For any n $ 3, k $ 2, the finitely generated free algebra
FV(Lk)(n) is isomorphic to the product

22n
3 p

k

p52
p

(k1,...,kp)
k1$???$kp$1

(p
i51ki#n

[(MOp)2n2p
3 (Lp)N(k1,...,k2)]f(n;k1,...,kp)

where N(k1, . . . , kp) 5 2n2p [((n
i51 3ki21) 2 p] and f(n; k1, . . . , kp) is given

by (1) and (2). n

One can verify that

o
(k1,...,kp)

k1$???$kp$1

(p
i51ki5n2l

S(n 2 l; k1, . . . , kp) 5 S(n 2 l, p)

where the Stirling number S(n 2 l, p) of the second kind is the number of
partitions of a labeled (n 2 l)-element set into exactly p parts and is given
by the formula

S(n 2 l, p) 5
1
p! o

p

s51
(21)p2s 1p

s2 sn2l

(Aigner, 1979, 3.39). From this it follows that
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22n
3 p

k

p52
p

(k1,...,k2)
k1$???$kp$1

(p
i51ki#n

[(MOp)2n2p
]f(n;k1,...,kp) 5 22n

3 p
k

p52
(MOp)(2n2pf8(n,p))

with

f8(n, p) 5 o
n2p

l50 1
n
l2S(n 2 l, p)

which is isomorphic to the n-generated free modular ortholattice F}2k(n) in
the variety }2k (Haviar et al., 1997b). Hence we can deduce the final result.

Corollary 4. For any n $ 3, k $ 2,

FV(Lk) (n) > F}2k (n) 3 p
k

p52
p

(k1,...,kp)
k1$???$kp$1

(p
i51ki#n

[(Lp)N(k1,...,kp)]f(n;k1,...,kp)

where F}2k(n) is the n-generated free modular ortholattice in the variety }2k ,
N(k1, . . . , kp) 5 2n2p[((p

i51 3ki21) 2 p], and f(n; k1, . . . , kp) is given by (1)
and (2).
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